A range of stimuli can increase the volume of muscle cells. These changes occur as an adaptive response that serves to increase the ability to generate force or resist fatigue in anaerobic conditions.
Strength training
Strength training (resistance training) causes neural and muscular adaptations which increase the capacity of an athlete to exert force through voluntary muscular contraction: After an initial period of neuro-muscular adaptation, the muscle tissue expands by creating sarcomeres (contractile elements) and increasing non-contractile elements like sarcoplasmic fluid.
Muscular hypertrophy can be induced by progressive overload (a strategy of progressively increasing resistance or repetitions over successive bouts of exercise in order to maintain a high level of effort). However, the precise mechanisms are not clearly understood; currently accepted hypotheses involve some combination of mechanical tension, metabolic fatigue, and muscular damage.
Muscular hypertrophy plays an important role in competitive bodybuilding and strength sports like powerlifting, football and Olympic weightlifting.
Anaerobic training
The best approach to specifically achieve muscle growth remains controversial (as opposed to focusing on gaining strength, power, or endurance); it was generally considered that consistent anaerobic strength training will produce hypertrophy over the long term, in addition to its effects on muscular strength and endurance. Muscular hypertrophy can be increased through strength training and other short-duration, high-intensity anaerobic exercises. Lower-intensity, longer-duration aerobic exercise generally does not result in very effective tissue hypertrophy; instead, endurance athletes enhance storage of fats and carbohydrates within the muscles, as well as neovascularization.